Развертка поверхности цилиндра с нанесённой на ней винтовой линией. Если развернуть на плоскость боковую поверхность цилиндра с нанесенной на ней винтовой линией, то винтовая линия предстанет в виде прямой линии, поскольку величина подъема точки пропорциональна ее перемещению вдоль окружности.

Начертательная геометрия Основы учебного курса

 

 

Взаимное пересечение поверхностей

Линией пересечения двух поверхностей является множество точек, общих для данных поверхностей. Из этого множества выделяют характерные (опорные, или главные) точки, с которых следует начинать построение этой линии. Они позволяют увидеть, в каких границах можно изменять положение вспомогательных секущих поверхностей для определения остальных точек.

К таким точкам относятся: экстремальные точки- верхняя и нижняя точки относительно той или иной плоскости проекций; точки, расположенные на очерковых образующих некоторых поверхностей точки границы зоны видимости и т.д. Кручение тонкостенных стержней замкнутого профиля Наиболее целесообразными при кручении являются тонкостенные стержни замкнутого профиля.

Следует имеет в виду, что линия пересечения двух поверхностей в проекциях всегда располагается в пределах контура наложения проекций двух пересекающихся поверхностей.

Иногда целесообразно воспользоваться преобразованием чертежа, чтобы представить пересекающиеся поверхности (или одну из них) в частном положении.

 Для определения  этих точек часто пользуются вспомогательными секущими поверхностями. Поверхности-посредники пересекают данные поверхности по линиям, которые, в свою очередь, пересекаются в точках линии пересечения данных поверхностей.

Секущие поверхности-посредники выбираются так, чтобы они, пересекаясь с данными поверхностями, давали простые для построения линии, например прямые и окружности.

Из общей схемы построения линии пересечения поверхностей выделяют два основных метода - метод секущих плоскостей и метод секущих сфер.

В общем случае решение задачи по построении линии пересечения двух поверхностей может быть сведено к рассмотренным ранее задачам по определению:

1. Точек пересечения линии с поверхностью;

2. Линии пересечения плоскости и поверхности;

3. Комбинации первой и второй задачи.

Если пересечь поверхность многогранника плоскостью, то в сечении получается многоугольник. Первая задача заключается в построении проекций многоугольника, получившегося в сечении, затем следует определить натуральный вид этого многоугольника. Также необходимо построить развертку поверхности данного многогранника, причем нужно указать на его поверхности след секущей плоскости.
Метод Монжа