Развертка поверхности цилиндра с нанесённой на ней винтовой линией. Если развернуть на плоскость боковую поверхность цилиндра с нанесенной на ней винтовой линией, то винтовая линия предстанет в виде прямой линии, поскольку величина подъема точки пропорциональна ее перемещению вдоль окружности.

Начертательная геометрия Основы учебного курса

  а) модель

б) эпюр

Рисунок 8.30. Пересечение прямой линии с конусом

(вспомогательная секущая плоскость-плоскость общего положения) Расчет винтовых пружин с малым шагом Приведем основные сведения по элементарной теории расчета на прочность и жесткость витых цилиндрических пружин с постоянным и малым шагом витка l, при котором угол наклона витка к горизонту мал и можно положить, что cosα 1

Поэтому в качестве вспомогательной секущей плоскости целесообразно выбрать такую плоскость, которая бы включала прямую l и пересекала конус по образующим (рис.8.30). Очевидно, что такая плоскость определяется прямой l и точкой S- вершиной конуса. Пусть основание конуса лежит в  горизонтальной плоскости проекций, тогда линия пересечения вспомогательной секущей плоскости и горизонтальной плоскости проекций ВС пересекает основание конуса в точках D и F. Таким образом в сечении конуса вспомогательной секущей плоскостью получится треугольник DFS. Так как полученный треугольник и прямая l лежат в одной плоскости, точки их пересечения К и Ми есть точки пересечения прямой с конусом. Если пересечь поверхность многогранника плоскостью, то в сечении получается многоугольник. Первая задача заключается в построении проекций многоугольника, получившегося в сечении, затем следует определить натуральный вид этого многоугольника. Также необходимо построить развертку поверхности данного многогранника, причем нужно указать на его поверхности след секущей плоскости.
Метод Монжа