Развертка поверхности цилиндра с нанесённой на ней винтовой линией. Если развернуть на плоскость боковую поверхность цилиндра с нанесенной на ней винтовой линией, то винтовая линия предстанет в виде прямой линии, поскольку величина подъема точки пропорциональна ее перемещению вдоль окружности.

Начертательная геометрия Основы учебного курса

Пересечение поверхности плоскостью

Задача, когда сферу пересекает плоскость общего положения, например  заданная двумя пересекающимися прямыми α(h∩f) решается следующим образом:

Рисунок 8.20. Пересечение сферы плоскостью общего положения  Выведенная в случае чистого изгиба стержня формула для прямого поперечного изгиба, вообще говоря, неприменима, поскольку из-за сдвигов, вызываемых касательными напряжениями , происходит депланация поперечных сечении (отклонение от закона плоских сечений).

1. Произведем замену плоскостей проекций таким образом, чтобы плоскость α стала проецирующей, т.е. переведем плоскость общего положения в частное.  h – горизонталь, f- фронталь, чтобы перевести плоскость α в положение проецирующей плоскости необходимо выбрать новую плоскость проекций, либо перпендикулярно горизонтальной проекции горизонтали h1, либо перпендикулярно фронтальной проекции фронталь – f2 (рис.8.20). В постановке должны присутствовать белый и очень темный предметы. В этюде рисунок может быть не очень строгим, его можно сделать кистью жидко разведенной краской нейтрального цвета

2. Дальнейшее решение аналогично предыдущей задаче.

Если пересечь поверхность многогранника плоскостью, то в сечении получается многоугольник. Первая задача заключается в построении проекций многоугольника, получившегося в сечении, затем следует определить натуральный вид этого многоугольника. Также необходимо построить развертку поверхности данного многогранника, причем нужно указать на его поверхности след секущей плоскости.
Метод Монжа