Метод проведения вспомогательных плоскостей применяется при построении линии пересечения поверхностей двух тел вращения. Суть этого метода заключается в следующем. Проводят вспомогательную плоскость А таким образом, чтобы каждое из данных тел она пересекала по такой линии, построение которой не является сложным.

Начертательная геометрия Основы учебного курса

Линия и точка, принадлежащие поверхности

Для определения принадлежности точки и линии поверхности рассмотрим следующие  позиционные задачи:

Задача По одной проекции точки, принадлежащей поверхности, найти точку на поверхности

Дано:

1. Поверхность Ф , заданная проекциями каркаса состоящего из образующих l  и направляющих n.

2. Проекция точки К1, принадлежащей поверхности Ф.

а) модель Рациональные формы поперечных сечений при изгибе. Решение задачи на эпюреб) эпюр

Рисунок 8.18. Точка на поверхности

Алгоритм решения задачи:

1. Через заданную проекцию точки К1 проводим одноименную проекцию произвольной вспомогательной линии принадлежащей поверхности т1.

2. Находим точки  11, 21, 31, 41, пересечения проекции линии m1 с проекцией каркаса поверхности, т.е. соответственно с проекциями линий  l11,  l21,  l31,  l41.

3. По линиям связи находим проекции точек 12, 22, 32, 42 как точки лежащие на  проекциях образующих каркаса соответственноl12,  l22,  l32,  l42   и определяющих положение проекции линии т2 на поверхности Ф.

4. По линии связи находим положение проекции точки К2, как точку принадлежащую вспомогательной линии т2.

 

 

 

Плоская фигура, которая получается, если все грани вычертить в настоящую величину на плоскости чертежа в том порядке, в каком они следуют на самом многограннике, называется разверткой (или выкройкой) поверхности данного многогранника. Для ясности можно сказать, что поверхность многогранника как бы разрезается вдоль некоторых его ребер так, чтобы потом эту поверхность можно было совместить с плоскостью чертежа.
Метод Монжа