Метод проведения вспомогательных плоскостей применяется при построении линии пересечения поверхностей двух тел вращения. Суть этого метода заключается в следующем. Проводят вспомогательную плоскость А таким образом, чтобы каждое из данных тел она пересекала по такой линии, построение которой не является сложным.

Начертательная геометрия Основы учебного курса

 

Линия и точка, принадлежащие поверхности

Для определения принадлежности точки и линии поверхности рассмотрим следующие  позиционные задачи:

Задача Построение линии принадлежащей поверхности, если одна из проекций линии задана (рис. 8.17).

Дано:

1.Поверхность Ф , заданная проекциями каркаса состоящих из образующих линий l  и направляющей n.

2. Проекция линии m2, принадлежащей поверхности Ф.

а) модель б) эпюр
Рисунок 8.17. Линия на поверхности Стадии разработки конструкторской документации Оформление чертежей

Алгоритм решения задачи:

1. Находим точки 12, 22, 32, 42 пересечения проекции линии m2 с проекцией каркаса поверхности, т.е. соответственно с проекциями линий l12,  l22,  l32,  l42 .

2. По линиям связи находим проекции точек 11, 21, 31, 41,  как точки лежащие на  проекциях образующих каркаса соответственно  l11,  l21,  l31,  l41 и определяющих положение проекции линии т1 на поверхности Ф.

 

 

Плоская фигура, которая получается, если все грани вычертить в настоящую величину на плоскости чертежа в том порядке, в каком они следуют на самом многограннике, называется разверткой (или выкройкой) поверхности данного многогранника. Для ясности можно сказать, что поверхность многогранника как бы разрезается вдоль некоторых его ребер так, чтобы потом эту поверхность можно было совместить с плоскостью чертежа.
Метод Монжа