Сечение – это плоская фигура, которая была получена в результате пересечения данного тела некоторой секущей плоскостью. При этом след секущей плоскости проводится штрихпунктирной линией. Выбирая такое направление секущих плоскостей, лучше избегать косых сечений, чтобы получались нормальные поперечные сечения тела.

Начертательная геометрия Основы учебного курса

Кривые линии

 

 

В основу классификации кривых положена природа их уравнений.

Кривые подразделяются на алгебраические и трансцендентные в зависимости от того, являются ли их уравнения алгебраическими или трансцендентными в прямоугольной системе координат.

Плоская кривая линия называется алгебраической, если её уравнение f (xy)=0. Функция  f (xy) является степенным множителем относительно переменных х и у; в остальных случаях кривая называется трансцендентной.

Кривая линия, представленная в декартовых координатах уравнением п- й степени, называется алгебраической кривой п-го порядка. Внутренние усилия и перемещения при продольной деформации

Порядок плоской алгебраической кривой линии определяется наибольшим числом точек её пересечения прямой линией. Любая прямая линия может пересекать алгебраическую кривую линию п-го порядка не более чем в п точках. 

Рассмотрим несколько примеров алгебраической кривой линии:

Рисунок 7.5. Синусоида

Трансцендентные кривые в отличие от алгебраических могут иметь бесконечное количество точек пересечения с прямой, точек перегиба, вершин и т.п. 

Синусоида - трансцендентная плоская кривая линия (рис.7.5), получающаяся в результате двойного равномерного движения точки - поступательного и возвратно-поступательного в направлении, перпендикулярном первому.

Синусоида - график функции у=sin x, непрерывная кривая линия с периодом Т=2п.

Под косыми сечениями понимают круг задач на построение натуральных видов сечений рассматриваемого тела проецирующейся плоскостью. Для выполнения косого сечения необходимо расчленить рассматриваемое тело на элементарные геометрические тела, например призму, пирамиду, цилиндр, конус, шар и т. д.
Метод Монжа