Сечение – это плоская фигура, которая была получена в результате пересечения данного тела некоторой секущей плоскостью. При этом след секущей плоскости проводится штрихпунктирной линией. Выбирая такое направление секущих плоскостей, лучше избегать косых сечений, чтобы получались нормальные поперечные сечения тела.

Начертательная геометрия Основы учебного курса

Кривые линии

 

В основу классификации кривых положена природа их уравнений.

Кривые подразделяются на алгебраические и трансцендентные в зависимости от того, являются ли их уравнения алгебраическими или трансцендентными в прямоугольной системе координат.

Плоская кривая линия называется алгебраической, если её уравнение f (xy)=0. Функция  f (xy) является степенным множителем относительно переменных х и у; в остальных случаях кривая называется трансцендентной.

Кривая линия, представленная в декартовых координатах уравнением п- й степени, называется алгебраической кривой п-го порядка.

Порядок плоской алгебраической кривой линии определяется наибольшим числом точек её пересечения прямой линией. Любая прямая линия может пересекать алгебраическую кривую линию п-го порядка не более чем в п точках. 

Рассмотрим несколько примеров алгебраической кривой линии: Кинематический анализ кривошипно-ползунного механизма Цель работы - кинематическое исследование кривошипно-ползунного механизма, включающее определение величины перемещения, скорости и ускорения ползуна в зависимости от угла поворота кривошипа. Кривошипно-ползунный (кривошипно-шатунный) механизм- четырехзвенник с тремя вращательными и одной поступательной кинематическими парами.

Рисунок 7.4. Эллипс

Эллипс :

- множество точек М плоскости (рис.7.4), сумма расстояний МF1 и МF2 которых до двух определенных точек F1 и F2 (фокусов эллипса) постоянна

МF1+МF2=2а.

Середина 0 отрезка F1F2 (фокусного расстояния)называется центром эллипса;

- линия пересечения прямого кругового конуса плоскостью, не проходящей через вершину конуса и пересекающей все прямолинейные образующие одной полости этого конуса;

- в прямоугольной системе координат 0ху с началом в центре эллипса, на оси которой лежат фокусы эллипса уравнение эллипса имеет следующий вид

х2/а2+у2/в2=1

где а и в - длинны большой и малой полуосей эллипса. При а=в фокусы F1 и F2 совпадают и указанное уравнение определяет окружность, которая рассматривается как частный случай эллипса.

Рассмотренные плоские кривые линии, получаемые при пересечении поверхности прямого кругового конуса плоскостями, различно расположенными по отношению к оси конуса, называют кривыми конических сечений. Под косыми сечениями понимают круг задач на построение натуральных видов сечений рассматриваемого тела проецирующейся плоскостью. Для выполнения косого сечения необходимо расчленить рассматриваемое тело на элементарные геометрические тела, например призму, пирамиду, цилиндр, конус, шар и т. д.
Метод Монжа