След секущей плоскости. Когда следы секущей плоскости совмещаются с осями симметрии проекций, то нет необходимости в дополнительных обозначениях на чертежах. В случае если след секущей плоскости не совпадает с осью симметрии данного вида, тогда он должен отмечаться утолщенными штрихами в начале и в конце линии разреза

Начертательная геометрия Основы учебного курса

Аксиома Прямая принадлежит плоскости, если имеет с плоскостью одну общую точку и параллельна какой-либо прямой расположенной в этой плоскости

Задача.

Через точку В провести прямую m если известно, что она принадлежит плоскости заданной пересекающимися прямыми n и k.

Пусть В принадлежит прямой n лежащей в плоскости заданной пересекающимися прямыми n и k. Через проекцию  В2 проведем проекцию прямой m2 параллельно прямой k2, для нахождения недостающих проекций прямой необходимо построить проекцию точки В1,  как точки лежащей на проекции прямой n1 и через неё провести проекцию прямой m1  параллельно проекции k1.

Таким образом точки В принадлежат плоскости заданной пересекающимися прямыми n и k, а прямая m проходит через эту точку и параллельна прямой k, значит согласно аксиоме прямая принадлежит этой плоскости.

Определение коэффициентов канонических уравнений Вычисление коэффициентов при неизвестных системы канонических уравнений метода сил и её грузовых членов, представ­ляющих единичные и грузовые перемещения, проводится с по­мощью известных методов определения перемещений, изложенных в предыдущем разделе.
а) модель б) эпюр
Рисунок 5.15. Прямая имеет с плоскостью одну общую точку и параллельна прямой расположенной в этой плоскости

Для поверхностей вращения любая плоскость, перпендикулярная оси вращения, будет пересекать данную поверхность по окружности. При выполнении чертежа все построения, связанные с нахождением отдельных точек кривой, нужно тонко выполнять карандашом, а после обводки кривой тушью вспомогательные построения удаляются. Благодаря этим линиям можно понять способ получения отдельных точек.
Метод Монжа