Разрезы различают в зависимости от числа секущих плоскостей, при помощи которых получается разрез на данной проекции. Они бывают: 1) простыми, когда имеется только одна секущая плоскость; 2) сложными, когда имеются две или более секущие плоскости, которые совмещаются с данной плоскостью проекций. Ступенчатым называется разрез в том случае, если сложный разрез получается при помощи параллельных плоскостей.

Начертательная геометрия Основы учебного курса

 

Виды проецирования.

Центральное проецирование есть наиболее общий случай проецирования геометрических объектов на плоскости.

Основными и неизменными его свойствами (инвариантами) являются следующие:

                    1)      проекция точки – точка;

                    2)      проекция прямой – прямая;

                    3)      если точка принадлежит прямой, то проекция этой точки принадлежит проекции прямой.

По принципу центрального проецирования работают фотоаппараты и кинокамеры. Упрощенная схема работы человеческого глаза близка к этому виду проецирования: роль центра проецирования выполняет оптический центр хрусталика, роль проецирующих прямых – лучи света; плоскостью проекций служит сетчатка глаза. Поэтому изображения, построенные по принципу центрального проецирования, наиболее наглядны и их широко используют в своей работе художники, архитекторы, дизайнеры и многие другие специалисты.

Сечения Выявление фоpмы внутpенних повеpхностей пpедмета пpи помощи штpиховых линий значительно затpудняет чтение чеpтежа, сoздает пpедпосылки для непpавильного его толкования, усложняет нанесение pазмеpов и условных обозначений.

Параллельное проецирование

Частный случай центрального проецирования – параллельное проецирование, когда центр проецирования удален в бесконечность, при этом проецирующие лучи можно рассматривать как параллельные проецирующие прямые. Положение проецирующих прямых относительно плоскости проекций определяется направлением проецирования S (рис.1.4). В этом случае полученное изображение называют параллельной проекцией объекта.

При параллельном проецировании сохраняются свойства центрального и добавляются следующие:

  1. проекции параллельных прямых параллельны между собой;

  2. отношение отрезков прямой равно отношению их проекций;

  3. отношение отрезков двух параллельных прямых равно отношению их проекций.

В свою очередь параллельные проекции подразделяются на прямоугольные, когда проецирующие прямые перпендикулярны плоскости проекций, и косоугольные, когда направление проецирования образует с плоскостью проекций угол не равный 900.

 

Рисунок 1.4. Параллельное
проецирование

Таким образом ортогональное (прямоугольное) проецирование является частным случаем параллельного и полученная этим методом проекция объекта называется ортогональной.

 

Ортогональному проецированию присущи все свойства параллельного и  центрального проецирования и кроме того, справедлива теорема о проецировании прямого угла: если хотя бы одна сторона прямого угла параллельна плоскости проекций, а вторая не перпендикулярна ей, то прямой угол на эту плоскость проецируется в прямой угол.

 К проекционным изображениям в начертательной геометрии предъявляются следующие основные требования:

1. Обратимость – восстановление оригинала по его проекционным изображениям (чертежу) – возможность определять форму и размеры объекта, его положение и связь с окружающей средой;

2. Наглядность – чертеж должен  создавать  пространственное представление о форме предмета;

3. Точность – графические операции, выполненные на чертеже, должны давать достаточно точные результаты;

4. Простота – изображение должно быть простым по построению и должно допускать однозначное описание объекта в виде последовательности графических операций.

Шаг винтовой линии. Точка, сделав полный оборот вокруг цилиндра, будет подниматься вверх или опускаться вниз на некоторое расстояние, которое будет одним и тем же для каждого полного оборота точки. Шагом винтовой линии называется подъем точки за один оборот. Витком называется часть винтовой линии, которая описывается точкой за один оборот.
Метод Монжа