Разрезы различают в зависимости от числа секущих плоскостей, при помощи которых получается разрез на данной проекции. Они бывают: 1) простыми, когда имеется только одна секущая плоскость; 2) сложными, когда имеются две или более секущие плоскости, которые совмещаются с данной плоскостью проекций. Ступенчатым называется разрез в том случае, если сложный разрез получается при помощи параллельных плоскостей.

Начертательная геометрия Основы учебного курса

Виды проецирования.

 

Одно из основных геометрических понятий - отображение множеств. В начертательной геометрии каждой точке трехмерного пространства ставится в соответствие определенная точка двумерного пространства – плоскости. Геометрическими элементами отображения служат точки, линии, поверхности пространства. Геометрический объект, рассматриваемый  как точечное множество отображается на плоскость по закону проецирования. Результатом такого отображения является изображение объекта.

В основу любого изображение положена операция проецирования, которая заключается в следующем. В пространстве выбирают произвольную точку S (рис.1.1) в качестве центра проецирования и плоскость Пi, не проходящая через точку S, в качестве плоскости проекций ( картинной плоскости). Чтобы спроецировать точку А на плоскость Пi , через центр проецирования S проводят луч SА до его пересечения с плоскостью Пi в точке Аi. Точку Аi принято называть центральной проекцией точки А , а луч SА - проецирующим лучом.

Описанные построения выражают суть операции, называемой центральным проецированием точек пространства на плоскость.

В евклидовом пространстве существуют точки, которые не имеют центральных проекций, и наоборот в плоскости Пi  есть точки, которые в пространстве не имеют оригиналов (точки D и F).

Точка F прямой m принадлежит плоскости , , проходящей через центр проецирования S и расположенной параллельно плоскости проекций, таким образом проецирующий луч SF параллелен плоскости проекций, а точка F, как и все точки лежащие в плоскости не имеют центральных проекций на Пi.

 

Центральное проецирование

Рисунок 1.1. Центральное проецирование

Точка Di проекции прямой mi не имеет оригинала на прямой m, так как проецирующий луч SDi параллелен прямой.

Для исключения подобных случаев евклидово пространство расширяют введением несобственных (бесконечно удаленных) точек. Такое пространство называется расширенным евклидовым пространством.

Проецирующие лучи, проведенные через все точки кривой n, образуют проецирующую коническую поверхность N (рис. 1.2). Проекция криволинейной фигуры, таким образом, представляет собой линию пересечения проецирующей поверхности N и плоскости проекций Пi.

Рисунок 1.2. Центральное проецирование линии

 

Рисунок 1.3. Центральное проецирование поверхности

Коническую поверхность К образуют лучи и при проецировании трехмерной фигуры (рис. 1.3). Линию Ki принято называть в этом случая очерковой или очерком данной фигуры.

Шаг винтовой линии. Точка, сделав полный оборот вокруг цилиндра, будет подниматься вверх или опускаться вниз на некоторое расстояние, которое будет одним и тем же для каждого полного оборота точки. Шагом винтовой линии называется подъем точки за один оборот. Витком называется часть винтовой линии, которая описывается точкой за один оборот.
Метод Монжа