Справочник по основным разделам физики Математика примеры решения задач Курс теоретических основ электротехники Начертательная геометрия История искусства
Интеграл Замена переменной интегрирование по частям

Частные производные ФНП, заданной неявно

Если каждой паре чисел (x, y) из некоторой области DxOy соответствует одно или несколько значений z, удовлетворяющих уравнению , то это уравнение неявно определяет функцию 2-х переменных, например, функцию .

Если существуют частные производные функции F(x, y, z):  и , то существуют частные производные от функции z (x, y), которые можно вычислить по формулам:

.  (2)

Пример. Дано: . Найти  и .

Здесь . По формулам (2) находим:

 

Уравнение F(x, y, z) = 0 неявно определяет еще две функции 2-х переменных: x = x(y, z) и y = y(x, z). Частные производные этих функций можно найти по формулам, аналогичным формулам (2), например:

.  (3)

 

Производная сложной ФНП. Полная производная

Пусть функция z= f (x, y, t) – функция трех переменных x, y и t, причем x и y, в свою очередь, являются функциями независимой переменной t, тогда   – это сложная функция одной переменной t, а x и y – промежуточные переменные.

Полной производной по переменной t сложной ФНП  называется её производная , вычисленная как производная функции одной переменной t в предположении, что переменные x и y также являются функциями от t, то есть при x = x(t) и y = y(t).

Полная производная вычисляется по формуле:

.  (4)

Здесь  – это полная производная функции z по переменной t при условии, что все другие переменные зависят от t;  – это частная производная функции z по переменной t при условии, что у функции есть другие независимые переменные, кроме t. При нахождении  зависимость переменных x, y от t не учитывается.

В полученный ответ следует подставить функции x = x(t) и y = y(t), чтобы выразить полную производную через независимую переменную t.

 Вычислить интеграл от разрывной функции  или установить его расходимость.

Решение. Данная подынтегральная функция имеет разрыв в точке х=0, поэтому разделим исходный интеграл на два несобственных интеграла, так как они будут представлять собой интегралы от разрывной функции в точке границы отрезка интегрирования.

.  (1)

Так как подынтегральная функция имеет разрыв на правом конце отрезка интегрирования, то переходим к следующей записи:

Таким образом, на отрезке  интеграл расходится, а следовательно расходится и исходный интеграл, так как равенство (1) справедливо только для сходящихся интегралов в правой части.


Вычисление двойного интеграла в декартовых и полярных координатах