Справочник по основным разделам физики Математика примеры решения задач Курс теоретических основ электротехники Начертательная геометрия История искусства
Интеграл Замена переменной интегрирование по частям

Функция нескольких переменных и ее частные производные

Определение функции нескольких переменных

Если каждой паре (x, y) значений двух независимых друг от друга переменных x и y из некоторого множества D соответствует определённое значение величины z, то говорят, что z есть функция двух независимых переменных x и y, определённая на множестве D. Множество D называется областью определения функции z = z (x, y).

Обозначается: z = f (x, y) или z = z (x, y).

Пример. .

Аналогично определяются функции трёх и более переменных.

Примеры.  – функция трёх переменных;

  – функция n переменных.

Общее название: функции нескольких переменных (ФНП). Введение в математический анализ Числовая последовательность

 

Частные производные ФНП

Ели одному из аргументов функции z = f (x, y) придать приращение, а другой аргумент не изменять, то функция получит частное приращение по одному из аргументов: – это частное приращение функции z по аргументу x; – это частное приращение функции z по аргументу у.

Частной производной функции нескольких переменных по одному из её аргументов называется предел отношения частного приращения функции по этому аргументу к соответствующему приращению аргумента при условии, что приращение аргумента стремится к нулю:

– это частная производная функции z по аргументу x;

– это частная производная функции z по аргументу у.

Чтобы вычислить частную производную ФНП по одному из её аргументов, нужно все другие её аргументы считать постоянными и проводить дифференцирование по правилам дифференцирования функции одного аргумента.

Пример.  Þ

 Вычислить интеграл от разрывной функции  или установить его расходимость.

Решение. Данная подынтегральная функция имеет разрыв в точке х=0, поэтому разделим исходный интеграл на два несобственных интеграла, так как они будут представлять собой интегралы от разрывной функции в точке границы отрезка интегрирования.

.  (1)

Так как подынтегральная функция имеет разрыв на правом конце отрезка интегрирования, то переходим к следующей записи:

Таким образом, на отрезке  интеграл расходится, а следовательно расходится и исходный интеграл, так как равенство (1) справедливо только для сходящихся интегралов в правой части.


Вычисление двойного интеграла в декартовых и полярных координатах