Справочник по основным разделам физики Математика примеры решения задач Курс теоретических основ электротехники Начертательная геометрия История искусства
Интеграл Замена переменной интегрирование по частям

Поверхностный интеграл второго рода

К понятию поверхностного интеграла 2-го рода приводит физическая задача о вычислении потока жидкости через некоторую поверхность S. При этом, в каждой точке поверхности S задаётся векторная функция (x,y,z) скорости жидкости.

Поверхность S называется двусторонней, если нормаль к поверхности при обходе по любому замкнутому контуру, лежащему на поверхности S, возвращается в первоначальное положение. Сторона поверхности S задаётся выбором направления нормали к поверхности, в этом случае поверхность называется ориентированной. Поверхностный интеграл 2-го рода имеет вид

где - скалярное произведение, в котором - единичный вектор нормали к заданной стороне поверхности S в произвольной точке (S - поверхность интегрирования). Применяется и другое обозначение векторной функции, а именно . Если векторные функции задать своими координатами

(P(x, у, z), Q(x, у, z), R(x, y, z)), (cos α, cos β, cosγ), то поверхностный интеграл 2-го рода можно записать в одной из следующих форм: Системы линейных алгебраических уравнений Этот раздел является одним из основных в алгебре. Нет такой отрасли науки и приложений, где в том или ином виде не использовались бы системы линейных алгебраических уравнений. При решении экономических задач системы линейных уравнений наиболее употребимы как в аппарате исследования, так и при рассмотрении частных проблем.

Если уравнение поверхности задано в виде z= f(x, у) и поверхность S взаимнооднозначно проектируется на координатную плоскость хОу в область хOу, то интеграл (45) можно вычислить по расчетной формуле

где запись

означает, что после вычисления скалярного произведения переменную z необходимо заменить на f(x, у).

Единичный вектор нормали  вычисляется по формуле:

 Коэффициент при орте  в формуле (47) определяет косинус

В формулах (47) и (48) выбирается знак «плюс», если угол γ между осью Oz и вектором - острый; знак «минус», если этот угол - тупой.

Формулы (46) - (48) реализуют метод вычисления поверхностного интеграла, который называется методом проектирования на одну из координатных плоскостей.

Свойства поверхностных интегралов 2-го рода такие же, как у поверхностных интефалов 1-го рода, за исключением одного - при изменении стороны поверхности интеграл (45) меняет знак.

Пример 4.

 Вычислить поверхностный интеграл 2-го рода по внешней боковой стороне цилиндра , лежащей в первом октанте и ограниченной плоскостями  х = 0,5, х = 1, у =0,5, причём 0,5 < х < 1, у > 0,5.

Векторная функция

РЕШЕНИЕ

Заданная поверхность взаимно однозначно проектируется на плоскость хОу, причём область Dху - квадрат 

По условию задачи угол γ - острый, поэтому в формулах (47), (48) выбираем знак «плюс».

Рис.10 - к примеру 4

Уравнение поверхности. Вычисляем формулы (47) и (48) и результат подставляем в (46):

 Вычислить интеграл от разрывной функции  или установить его расходимость.

Решение. Данная подынтегральная функция имеет разрыв в точке х=0, поэтому разделим исходный интеграл на два несобственных интеграла, так как они будут представлять собой интегралы от разрывной функции в точке границы отрезка интегрирования.

.  (1)

Так как подынтегральная функция имеет разрыв на правом конце отрезка интегрирования, то переходим к следующей записи:

Таким образом, на отрезке  интеграл расходится, а следовательно расходится и исходный интеграл, так как равенство (1) справедливо только для сходящихся интегралов в правой части.


Вычисление двойного интеграла в декартовых и полярных координатах