Справочник по основным разделам физики Математика примеры решения задач Курс теоретических основ электротехники Начертательная геометрия История искусства
Интеграл Замена переменной интегрирование по частям

Вычисление криволинейных интегралов 1-го рода

Чтобы вычислить криволинейный интеграл 1-го рода, его нужно преобразовать в определённый интеграл с помощью уравнения кривой интегрирования, при этом:

- если кривая MN задана уравнением:

, то

- если кривая MN задана уравнением: Полярная система координат:

, то

- если кривая MN задана параметрическими уравнениями:

 

то 

- если кривая MN задана в полярных координатах

то

- если криволинейный интеграл задан на пространственной кривой MN и подынтегральная функция зависит от трех переменных f(x,y,z), то задавая кривую параметрическими уравнениями 

x=x(t), y=y(t), z=z(t),

  вычисление производим по формуле:

Вычислить несобственный интеграл  или установить его расходимость.

Решение. Так же, как и в предыдущем примере, перейдем от несобственного интеграла к определенному под знаком предела.

Замечание: когда , то .

Поэтому получаем, что , а это значит, что данный интеграл расходится.


Вычисление двойного интеграла в декартовых и полярных координатах