Справочник по основным разделам физики Математика примеры решения задач Курс теоретических основ электротехники Начертательная геометрия История искусства
Интеграл Замена переменной интегрирование по частям

Криволинейный интеграл первого рода

Пусть на плоскости хОу расположена кривая MN, гладкая (касательная к кривой непрерывно изменяется  вдоль кривой) или кусочно-гладкая (составленная из гладких участков). Функция z =f(х,y) определена и ограничена на кривой MN. Составляется интегральная сумма:

где n - число частичных кривых, на которые разделена кривая MN; (хi;yi) - некоторая точка, взятая на i -ой частичной кривой; Δli- длина i-ой частичной кривой, i=1,2,…n.

Предел интегральной суммы (22) при условии, что все длины Δli →0 (n→∞) называется криволинейным интегралом первого рода от функции f(х, у) по кривой MN и обозначается как

где MN - линия интегрирования; dl - дифференциал длины дуги. Связь сферических и декартовых координат:

Другое название интеграла (23) - криволинейный интеграл от функции f (х, у) по длине дуги MN.

Кривая MN может быть замкнутой линией L. Для обозначения криволинейного интеграла в этом случае используют символ 

8. Основные свойства и приложения криволинейного интеграла первого рода

1. Линейные свойства:

2.Если линия L состоит из частей L1 и L2, то

3. При изменении направления интегрирования криволинейный интеграл не изменяет своего значения, т.е. если под MN и NM понимать разнонаправленные линии, то

4. Это свойство характерно только для криволинейного интеграла 1-го рода, ввиду того, что dl > 0 при любом движении вдоль кривой MN.

С помощью криволинейных интегралов 1-го рода можно вычислять следующие геометрические и физические величины:

1)  длина кривой MN

2) Если кривая MN - материальная с распределённой плотностью , то

а) масса кривой

б) координаты центра тяжести

в)  моменты инерции кривой относительно осей координат и начала координат

Вычислить несобственный интеграл  или установить его расходимость.

Решение. Так же, как и в предыдущем примере, перейдем от несобственного интеграла к определенному под знаком предела.

Замечание: когда , то .

Поэтому получаем, что , а это значит, что данный интеграл расходится.


Вычисление двойного интеграла в декартовых и полярных координатах