Справочник по основным разделам физики Математика примеры решения задач Курс теоретических основ электротехники Начертательная геометрия История искусства
Интеграл Замена переменной интегрирование по частям

Вычислить тройной интеграл , где

Решение

 

Теорема 1 о переходе к сферическим координатам

Пусть - непрерывно дифференцируемые и пусть - непрерывная на функция. Тогда

Переход к сферическим координатам осуществляется функциями

r - расстояние точки M от начала координат (длина радиус-вектора точки);

- угол между радиус-вектором и положительным направлением оси OZ;

- угол между положительным направлением оси OX и проекцией радиус-вектора на плоскость XOY, отсчитываемый против часовой стрелки (полярный угол).

Границы изменения сферических координат для всех точек пространства:

Связь сферических и декартовых координат:

Замена переменных в тройном интеграле осуществляется в общем случае по формуле, аналогичной формуле замены переменных в двойном интеграле. В частности, при переходе к сферическим координатам эта формула имеет вид:

I - это определитель Якоби, имеющий вид:

т.к. и .

Формула перевода тройного интеграла к сферическим координатам:

Далее тройной интеграл сводится к трехкратному в соответствии с неравенствами для области V в сферических координатах.

Эффективно переводить в сферические координаты тройной интеграл по областям, в границах которых есть сфера.

Вычислить несобственный интеграл  или установить его расходимость.

Решение. Так же, как и в предыдущем примере, перейдем от несобственного интеграла к определенному под знаком предела.

Замечание: когда , то .

Поэтому получаем, что , а это значит, что данный интеграл расходится.


Вычисление двойного интеграла в декартовых и полярных координатах