Справочник по основным разделам физики Математика примеры решения задач Курс теоретических основ электротехники Начертательная геометрия История искусства
Интеграл Замена переменной интегрирование по частям

Тройной интеграл в цилиндрических и сферических координатах

Цилиндрические координаты точки в пространстве - это ее полярные координаты в XOY и координата Z.

Связь между декартовыми и цилиндрическими координатами:

Перевод тройного интеграла к цилиндрическим координатам и сведение к повторному трехкратному интегралу осуществляется следующим образом:

Пример 12

Найти момент инерции по оси z площади поверхности, которая лежит ниже параболоида , внутри цилиндра , над плоскостью Оxy и имеет формулу распределения плотности .

Решение

По формуле момента инерции получим:

Уравнение области внутри цилиндра переведем в цилиндрические координаты. Получаем:

Вычислить несобственный интеграл  или установить его расходимость.

Решение. Так же, как и в предыдущем примере, перейдем от несобственного интеграла к определенному под знаком предела.

Замечание: когда , то .

Поэтому получаем, что , а это значит, что данный интеграл расходится.


Вычисление двойного интеграла в декартовых и полярных координатах