Справочник по основным разделам физики Математика примеры решения задач Курс теоретических основ электротехники Начертательная геометрия История искусства
Интеграл Замена переменной интегрирование по частям

Приложения определенного интеграла

Площадь плоской криволинейной трапеции.

Пример 13. Вычислить площадь фигуры, ограниченной линиями:

.

Решение. Построим фигуру, площадь которой надо вычислить. Одной из линий является параболой с вершиной в точке С с координатами (3;4). Вторая линия - прямая.

Найдем координаты точек пересечения данных линий:

Для этого решаем систему уравнений , ее решением являются точки A(2;3), B(5;0).

Фигура ACB не является криволинейной трапецией, поэтому для вычисления площади данной фигуры рассмотрим разность площадей двух криволинейных трапеций: FACB и FAB.

Для вычисления площадей воспользуемся формулой:

, где a и b это пределы, в которых изменяется переменная х. В данном случае для обеих фигур a=2, b=5. Из чертежа видно, что для фигуры FACB . Вычислим площадь этой фигуры:

Для фигуры FAB , следовательно, имеем:

.

Площадь искомой фигуры будет равна: .

Пример 14. Вычислить площадь фигуры, ограниченной линией .

Решение. Построим данную кривую.

Полярные координаты точек кривой получаются заданием значений угла и вычислением значений  из равенства . Положение точки А на плоскости в полярной системе координат определяют расстоянием  от полюса 0 до точки и углом , образованным отрезком ОА с полярной осью.

Вычислим площадь данной фигуры по формуле:, где и  пределы, в которых лежит данная фигура. В нашем случае .

Подставляя все эти величины в формулу, получаем:

.

Вычислить несобственный интеграл  или установить его расходимость.

Решение. Так же, как и в предыдущем примере, перейдем от несобственного интеграла к определенному под знаком предела.

Замечание: когда , то .

Поэтому получаем, что , а это значит, что данный интеграл расходится.


Вычисление двойного интеграла в декартовых и полярных координатах