Справочник по основным разделам физики Математика примеры решения задач Курс теоретических основ электротехники Начертательная геометрия История искусства
Интеграл Замена переменной интегрирование по частям

Примеры решения и офрмления задач контрольной работы

Неопределенный интеграл

Пример 1. Найти интеграл .

Решение. Поделив каждое слагаемое числителя подынтегральной дроби на знаменатель, и используя, что интеграл от суммы функций равен сумме интегралов от этих функций, получим:

.

Первый интеграл является табличным: .

Во втором интеграле воспользуемся тем, что .

Матричные уравнения Уравнение, называется матричным, если в качестве неизвестного оно содержит матрицу.

Получим следующую запись .

Если представить, что arcsinx=t, то данный интеграл будет интегралом от степени , но явно переходить к переменной t нет необходимости.

.

Таким образом, для заданного интеграла имеем:

.

Пример 2. Найти интеграл .

Решение. Как и в примере 1, вычислим дифференциал  .

Числитель подынтегральной дроби  преобразуем тождественно к виду, содержащему . Исходя из преобразований, сделанных выше, получаем:

 .

Разделив почленно подынтегральную функцию, получим:

Первый интеграл это интеграл вида .

.

Для того чтобы вычислить второй интеграл, выделим полный квадрат из выражения ():

Второй инте грал теперь будет иметь следующий вид:

.

С учетом того, что , этот интеграл табличный.

Таким образом, для заданного интеграла имеем:

.

Вычислить несобственный интеграл  или доказать его расходимость.

Решение. Перейдем от несобственного интеграла к определенному с границами .Далее считаем полученный интеграл, с помощью обычных правил интегрирования:


Вычисление двойного интеграла в декартовых и полярных координатах