Справочник по основным разделам физики Математика примеры решения задач Курс теоретических основ электротехники Начертательная геометрия История искусства
Справочный материал и примеры к выполнению контрольной работы по математике

Вычислить расходимость (дивергенцию) и вихрь (ротор) в произвольной точке , а также найти уравнения векторных линий поля градиентов скалярного поля .

РЕШЕНИЕ.

1. По заданному скалярному полю   построим поле его градиентов

.

Дивергенция (расходимость) векторного поля  в декартовой системе координат вычисляется по формуле

и для поля  получим

.

Убедимся, что  (т.е. что поле градиентов – безвихревое поле);   вычисляется как символический определитель третьего порядка

  .

Для поля градиентов

2. Уравнение векторных линий поля  определяется системой дифференциальных уравнений, которая в симметрической форме имеет вид

.

Запишем эту систему для заданного поля :

.

Ответ.  .

Найти интеграл .

Решение. Разложим подынтегральную функцию на сумму простейших дробей. Чтобы разложить знаменатель на сомножители нужно решить квадратное уравнение . Его корнями являются . Теперь знаменатель может быть представлен следующим образом

.

Тогда наша дробь представима в виде суммы элементарных дробей:

.

Нужно найти неизвестные коэффициенты A,B,C. Для этого приведем дроби к общему знаменателю:

.

Так как дроби между собой равны, а также равны их знаменатели, то и числители также равны. Поэтому у многочленов, стоящих в числителе приравняем коэффициенты при х2,х1,х0 и получим систему трех уравнений с тремя неизвестными:

.

Решив эту систему получим следующие значения A, B и C: .

Значит, наша дробь раскладывается на сумму дробей:

.

Подставляя это разложение в интеграл, получаем:


Тройной интеграл в цилиндрических и сферических координатах