Справочник по основным разделам физики Математика примеры решения задач Курс теоретических основ электротехники Начертательная геометрия История искусства
Справочный материал и примеры к выполнению контрольной работы по математике

Вычислить работу силы  при перемещении единичной массы вдоль кривой  линии пересечения двух поверхностей:  от точки  до точки 

РЕШЕНИЕ.

Работа силы по перемещению материальной точки единичной массы есть линейный интеграл вдоль дуги  от точки  до точки 

.

Последний интеграл есть криволинейный интеграл второго рода по пространственной кривой . Его вычисление сводится к вычислению определенного интеграла, для чего кривую  надо представить в параметрической форме (условием задачи кривая  задана в виде линии пересечения поверхности кругового цилиндра  с плоскостью , см. рис.81).

Параметризацию кривой удобно провести следующим образом: зададим ; тогда из уравнения цилиндра найдем, что  и из уравнения плоскости, что . Итак,

.

Найдем значения параметра , соответствующие точкам  и 

,  откуда 

, откуда .

Рис.81

Для работы получим

=

=

=

Ответ. Работа равна .

Найти интеграл .

Решение. Разложим подынтегральную функцию на сумму простейших дробей. Чтобы разложить знаменатель на сомножители нужно решить квадратное уравнение . Его корнями являются . Теперь знаменатель может быть представлен следующим образом

.

Тогда наша дробь представима в виде суммы элементарных дробей:

.

Нужно найти неизвестные коэффициенты A,B,C. Для этого приведем дроби к общему знаменателю:

.

Так как дроби между собой равны, а также равны их знаменатели, то и числители также равны. Поэтому у многочленов, стоящих в числителе приравняем коэффициенты при х2,х1,х0 и получим систему трех уравнений с тремя неизвестными:

.

Решив эту систему получим следующие значения A, B и C: .

Значит, наша дробь раскладывается на сумму дробей:

.

Подставляя это разложение в интеграл, получаем:


Тройной интеграл в цилиндрических и сферических координатах