Справочник по основным разделам физики Математика примеры решения задач Курс теоретических основ электротехники Начертательная геометрия История искусства
Справочный материал и примеры к выполнению контрольной работы по математике

Вычислить криволинейный интеграл

по формуле Грина; замкнутый контур () складывается из двух кривых:  и  (см. рис. 80).

РЕШЕНИЕ.

 Преобразуем криволинейный интеграл по замкнутому контуру в двойной по формуле Грина

.

Для заданного по условию интеграла получим .

Вычислим двойной интеграл в декартовой системе координат. Имеем:

Рис.80

Замечание. Двойной интеграл может быть вычислен и в полярной системе координат:

.

Ответ. .

Найти интеграл .

Решение. Разложим подынтегральную функцию на сумму простейших дробей. Чтобы разложить знаменатель на сомножители нужно решить квадратное уравнение . Его корнями являются . Теперь знаменатель может быть представлен следующим образом

.

Тогда наша дробь представима в виде суммы элементарных дробей:

.

Нужно найти неизвестные коэффициенты A,B,C. Для этого приведем дроби к общему знаменателю:

.

Так как дроби между собой равны, а также равны их знаменатели, то и числители также равны. Поэтому у многочленов, стоящих в числителе приравняем коэффициенты при х2,х1,х0 и получим систему трех уравнений с тремя неизвестными:

.

Решив эту систему получим следующие значения A, B и C: .

Значит, наша дробь раскладывается на сумму дробей:

.

Подставляя это разложение в интеграл, получаем:


Тройной интеграл в цилиндрических и сферических координатах