Справочник по основным разделам физики Математика примеры решения задач Курс теоретических основ электротехники Начертательная геометрия История искусства
Справочный материал и примеры к выполнению контрольной работы по математике

Задание 11. Вычислить интегралы от функции комплексного переменного:

а) , где   - отрезок прямой, , .

б) , где  - ломаная, , , .

в) , где  - дуга окружности , .

г) , где  - отрезок прямой , соединяющий точки  и ,  и . Возрастание и убывание функций Теорема. (Достаточное условие возрастания функции)

Решение.

а) Так как подынтегральная функция  аналитична всюду, то можно воспользоваться формулой Ньютона-Лейбница: =.

б) Подынтегральная функция  определена и непрерывна всюду, ломаная  представляет собой кусочно-гладкую кривую, поэтому искомый интеграл сводится к вычислению двух криволинейных интегралов по координатам по формуле:

.

Следовательно,

.

Воспользуемся свойством аддитивности криволинейного интеграла:

.

На отрезке  , значит , . Поэтому .

На отрезке  , , . Поэтому

.

Искомый интеграл  равен .

в) Положим , тогда , . Следовательно,

=.

г) Зададим линию  параметрическими уравнениями: , , , .

Для кривой, заданной параметрическими уравнениями , , справедлива формула .

Поэтому =.

Найти интеграл .

Решение. С помощью формул тригонометрии: , такие подынтегральные выражения приводятся к рациональным выражениям, зависящим от . Получаем:

,

а интеграл приобретает следующий вид:

  .

Применив универсальную тригонометрическую замену

, получим интеграл .

Возвратившись к прежней переменной, имеем:

.


Тройной интеграл в цилиндрических и сферических координатах