Справочник по основным разделам физики Математика примеры решения задач Курс теоретических основ электротехники Начертательная геометрия История искусства
Справочный материал и примеры к выполнению контрольной работы по математике

Задание 9. Разложить в ряд Лорана функцию  в окрестности особой точки .

Решение. Воспользуемся известным разложением:

.

Задание 10. Для функции  найти изолированные особые точки, провести их классификацию, вычислить вычеты относительно найденных точек. Построенный многочлен  называется интерполяционным многочленом Лагранжа, а (5) – интерполяционной формулой Лагранжа.

a) ;

б) ;

в) .

Решение.

а). Особой точкой функции является точка . Чтобы определить вид особой точки разложим функцию в ряд Лорана по степеням :

Главная часть ряда Лорана содержит конечное число слагаемых, значит   - полюс. Порядок высшей отрицательной степени  определяет порядок полюса. Следовательно,  - полюс кратности 2. Вычет найдем, используя формулу , тогда .

б). Особой точкой функции является точка . Чтобы определить вид особой точки используем признак поведения функции в особой точке.

, значит  устранимая точка и, следовательно .

в). Особой точкой функции является точка . Чтобы определить вид особой точки используем разложение функции в ряд Лорана по степеням :

Главная часть ряда Лорана содержит бесконечное число слагаемых, значит  - существенно особая точка. Тогда , т.к. коэффициент при  равен нулю.

Найти интеграл .

Решение. С помощью формул тригонометрии: , такие подынтегральные выражения приводятся к рациональным выражениям, зависящим от . Получаем:

,

а интеграл приобретает следующий вид:

  .

Применив универсальную тригонометрическую замену

, получим интеграл .

Возвратившись к прежней переменной, имеем:

.


Тройной интеграл в цилиндрических и сферических координатах