Справочник по основным разделам физики Математика примеры решения задач Курс теоретических основ электротехники Начертательная геометрия История искусства
Справочный материал и примеры к выполнению контрольной работы по математике

ОДУ высших порядков.

Задание 1.

1) Найти модуль и аргумент чисел  и . Изобразить числа на комплексной плоскости. Представить числа в тригонометрической и показательной форме.

2) Найти: а). ; б). ; в).

Решение.

1) Изобразим числа на комплексной плоскости. При этом числу  будет соответствовать точка , числу  - точка .

Для нахождения модуля и аргумента заданных чисел воспользуемся формулами:

  и

Получим:

, ,

, .

Чтобы перейти от алгебраической формы записи комплексного числа к тригонометрической и показательной применим формулы:

 и .

Использовав ранее полученные результаты, получим:

,

,

,

.

2) а)

 

б)

 

в) Применим формулу .

при  : ;

при : ;

при :

Найти интеграл .

Решение. С помощью формул тригонометрии: , такие подынтегральные выражения приводятся к рациональным выражениям, зависящим от . Получаем:

,

а интеграл приобретает следующий вид:

  .

Применив универсальную тригонометрическую замену

, получим интеграл .

Возвратившись к прежней переменной, имеем:

.


Тройной интеграл в цилиндрических и сферических координатах