Справочник по основным разделам физики Математика примеры решения задач Курс теоретических основ электротехники Начертательная геометрия История искусства
Справочный материал и примеры к выполнению контрольной работы по математике

Замена переменной и интегрирование по частям

Интегрирование выражений, содержащих квадратный трехчлен

Задания для подготовки к практическому занятию

Итак, для вычисления неопределенного интеграла необходимо свести его к табличному, выбирая для этого на каждом шаге одно из трех действий:

- упрощение (разложение на слагаемые),

- замену переменной (включая сюда и внесение под дифференциал),

- интегрирование по частям.

Примеры

  - табличный интеграл (вынести )

  - упростить, разделив почленно числитель на знаменатель

 - сделать замену t=-(x2+1) (или внести х под знак дифференциала)

  - берется по частям (u=x, dv=cos(1-px)dx)

Выделение полного квадрата в квадратном трехчлене – способ выбора замены переменной. Для того, чтобы выделить полный квадрат, надо вспомнить формулу сокращенного умножения:

Подчеркнуты два слагаемых, на которые мы будем опираться при выделении полного квадрата. Перепишем равенство:

Пример

Рассмотрим квадратный трехчлен . Прежде всего вынесем за скобки множитель перед х2:

Первые два слагаемых в скобках соответствуют первым двум слагаемым в правой части формулы квадрата суммы. Следовательно, очевидно, . Таким образом, получаем:

.

Найти интеграл .

Решение. Понизим у  и  степень с помощью следующих формул: .

Тогда в исходном интеграле получим следующее:

Первый интеграл является табличным: , а во втором интеграле применим формулу понижения степени. Тогда искомый интеграл преобразуется к виду:

.


Тройной интеграл в цилиндрических и сферических координатах