Справочник по основным разделам физики Математика примеры решения задач Курс теоретических основ электротехники Начертательная геометрия История искусства
Интеграл Замена переменной интегрирование по частям

Функции комплексной переменной

Определение и свойства функции комплексной переменной

 Пусть даны две плоскости комплексных чисел и на первой – множество D комплексных чисел z = x + iy, где i – мнимая единица (i2 = –1), на второй – множество G комплексных чисел w = u +iv.

Если каждому числу  по некоторому правилу f поставлено в соответствие определенное число , то говорят, что на множестве D задана функция комплексной переменной (ФКП), отображающая множество D в множество G. Обозначается: w = f (z).

Множество D называется областью определения ФКП.

Функцию w = f (z) можно представить в виде

f (z) = u(x, y) + iv(x, y),

где u(x, y) – действительная часть ФКП, v(x, y) – мнимая часть ФКП, обе они – действительные функции от x, y.

Пример 1. . Здесь  = x – iy – число, сопряженное числу z= x+iy.

Выделим действительную и мнимую части ФКП:

 u = x2 – y2 – 2x; v = 2xy + 2y.

Вычислим значение функции w в точке z1 = 2 – 3i:

.

Тот же результат получаем непосредственной подстановкой:

.

Говорят, что ФКП f (z) = u(x, y) +iv(x, y) имеет предел в точке z0, равный числу A = a + ib, если . Обозначается: .

Существование предела ФКП w = f (z) при  в означает существование двух пределов: .

 ФКП f (z) = u(x, y) +iv(x, y) называется непрерывной в точке z0, если выполняется условие: .

 Непрерывность ФКП w = f (z) в точке z0 = x0 + iy0 эквивалентна непрерывности функций u(x, y)  и v(x, y) в точке (x0, y0).

 

Дифференцирование ФКП. Аналитические ФКП

Производной от функции комплексной переменной w = f (z) в точке z0 называется предел:

,

где , и  произвольным образом.

Функцию w = f (z), дифференцируемую в точке z0 и некоторой ее окрестности, называют аналитической, или регулярной функцией в точке z0.

 Точки, в которых ФКП не является аналитической, называют особыми точками этой функции.

Для того, чтобы функция f (z) = u(x, y) +iv(x, y) была аналитической в области D необходимо и достаточно, чтобы частные производные 1-го порядка функций u(x, y) и v(x, y) были непрерывны в этой области и выполнялись бы условия:

,  (10)

называемые условиями Эйлера-Даламбера, или условиями Коши-Римана.

Приложения определенного интеграла

Площадь плоской криволинейной трапеции.

Вычислить площадь фигуры, ограниченной линиями:

.

Решение. Построим фигуру, площадь которой надо вычислить. Одной из линий является параболой с вершиной в точке С с координатами (3;4). Вторая линия - прямая.

Найдем координаты точек пересечения данных линий:


Решение примерного варианта контрольной работы