Справочник по основным разделам физики Математика примеры решения задач Курс теоретических основ электротехники Начертательная геометрия История искусства
Интеграл Замена переменной интегрирование по частям

Скалярное поле. Градиент. Производная по направлению

Говорят, что в двумерной области DxOy задано скалярное поле, если в каждой точке M(x, y) Î D задана скалярная функция координат точки:

U(M) = U(x, y).

Пример: скалярное поле температур T(x, y) в области D.

Линии уровня скалярного поля – это такие линии, на каждой из которых функция U(x, y) сохраняет постоянное значение.

Уравнения линий уровня скалярного поля: U(x, y) = const.

Геометрически линии уровня получаются, если поверхность z = U(x, y) пересекать горизонтальными плоскостями z = С и проектировать линии пересечения на плоскость xOy.

Градиентом скалярного поля U(x, y) в фиксированной точке   называется вектор, проекции которого на оси координат совпадают с частными производными функции, вычисленными в точке М0:

, (7)

где векторы  – это орты координатных осей.

Вектор градиента  направлен перпендикулярно касательной к линии уровня, проходящей через точку М0. Направление градиента указывает направление наибольшего роста функции U(x, y) в точке М0 .

Отложим от фиксированной точки M0(x0, y0) некоторый вектор .

Скорость изменения скалярного поля U(x, y) в направлении вектора характеризует величина , называемая производной по направлению.

Если в прямоугольной системе координат xОy вектор  имеет направляющие косинусы cosa и cosb, то производная функции U(x, y) по направлению вектора  в точке М0 – число   – можно найти по формуле:

, (8)

Напомним формулы для вычисления направляющих косинусов вектора :

, где модуль вектора: .

Аналогично определяют скалярное поле U(M) в трехмерной области V:

U(M) = U(x, y, z), . Поверхности уровня скалярного поля – это такие поверхности, на каждой из которых функция U(x, y, z) сохраняет постоянное значение. Уравнения поверхностей уровня скалярного поля: U(x, y, z) = const.

Градиент скалярного поля U(x, y, z) в произвольной точке M(x, y, z):

, (9)

где векторы  – это орты координатных осей.

 Вектор  поля U(x, y, z) направлен параллельно нормали к поверхности уровня U(x, y, z) = const в точке М.

 Вычислить интеграл от разрывной функции  или установить его расходимость.

Решение. Данная подынтегральная функция имеет разрыв в точке х=0, поэтому разделим исходный интеграл на два несобственных интеграла, так как они будут представлять собой интегралы от разрывной функции в точке границы отрезка интегрирования.

.  (1)

Так как подынтегральная функция имеет разрыв на правом конце отрезка интегрирования, то переходим к следующей записи:

Таким образом, на отрезке  интеграл расходится, а следовательно расходится и исходный интеграл, так как равенство (1) справедливо только для сходящихся интегралов в правой части.


Вычисление двойного интеграла в декартовых и полярных координатах