Справочный материал и примеры к выполнению контрольной работы по математике

Справочный материал и примеры к выполнению контрольной работы по математике
Справочние по физике
Учебное пособие по экоинформатике
Начертательная геометрия
Центральное проецирование
Метод Монжа
Типы задач начертательной геометрии
Методы преобразования ортогональных проекций
Метод плоскопараллельного перемещения
Фронтально проецирующая плоскость
Биссекторная плоскость
Горизонтальная плоскость
Фронтальная плоскость
Метод вспомогательных секущих плоскостей
Профильная плоскость
Многогранники
Пирамида
Тетраэдр
Звездчатые формы и соединения тел Платона
Пересечение пирамиды с призмой
Кривые линии
Цилиндрическая винтовая линия
Образование поверхности вращения
Образование сферы
Винтовые поверхности
Конические сечения
Пересечение конуса и призмы
Пересечение конуса и сферы
Свойства развертки
Пирамида и её развертка
Развертка призмы способом раскатки
Развертка конической поверхности
Задание касательной плоскости на эпюре Монжа
Сущность метода аксонометрического проецирования
Основная теорема аксонометрии
Изометрические проекции окружностей
Построение аксонометрических изображений
История искусства
Доисторическая эпоха
Египет
Индия и Китай Буддизм
Эллада архитектура живопись
Древнехристианская эпоха Византия
Дальнейшее развитие христианства в Европе
Архитектура Запада Романский стиль. Готика
Италия в эпоху возрождения Высший расцвет искусств
Нидерланды Фламандская и Голландская школы
Костюм XVIII-XIX веков
Linux установка
Использование среды рабочего стола в Linux
Система команд Linux
Общее администрирование системы
Работа в сетях Linux Internet
Linux как сервер
Web-сервер Linux

 

Матрицы и определители

Задания для подготовки к практическому занятию Вопросы и задачи Задания для подготовки к практическому занятию Решить матричные уравнения АХ=В и YА=В.

Векторы

Найти площадь этого треугольника. Решение: Есть несколько способов найти площадь треугольника, мы воспользуемся способом, связанным с векторами, а именно – геометрическим смыслом векторного произведения. Согласно ему, площадь треугольника АВС равна половине модулю векторного произведения векторов .

Предел последовательности Напомним для начала, что числовая последовательность – это бесконечный упорядоченный набор чисел. Члены последовательности можно пронумеровать, так что каждому натуральному значению n (1,2,3,…) соответствует член последовательности (а1, а2, а3,…)

Вычислить  .

Предел функции

 Предел функции f(x) на бесконечности:  вычисляют так же, как предел последовательности, учитывая только, что х может стремиться к +¥ или к -¥.  Если предел функции при х®+¥ или х®-¥ существует и конечен, это

значит, что у графика функции имеется горизонтальная асимптота. Например, график функции  имеет асимптоту у=0 при х®±¥, а график функции y=arctgx – асимптоту  при х®+¥ и  при х®-¥.

  Предел функции f(x) в точке a: – это (говоря упрощенно) число, к которому стремится значение функции, если ее аргумент стремится к а. Если функция непрерывна в точке а, это значит, что ее предел в этой точке равен ее значению: . Поэтому первым действием при вычислении предела функции является подстановка значения аргумента. Если при этом получилось конкретное число или бесконечность – это и есть искомый предел.

Производная функции Займемся непосредственно вычислением производных, для чего используем сводную таблицу формул дифференцирования. Вторая часть таблицы, в которой приведены производные основных элементарных функций, записана для сложных функций вида f(u), u=u(x). При этом следует помнить, что .

Производная и дифференциал. Исследование функций.

Неопределенный интеграл. Табличное интегрирование Замена переменной; интегрирование по частям Интегрирование выражений, содержащих квадратный трехчлен

Интегрирование рациональных функций Для того, чтобы проинтегрировать рациональную дробь (многочлен в числителе, многочлен в знаменателе), обычно нужно ее упростить (как вы помните, это значит – представить в виде суммы).

Интегрирование тригонометрических выражений С тригонометрическими интегралами мы уже встречались ранее. Их особенностью, пожалуй, можно считать обилие тригонометрических формул, позволяющих преобразовывать подынтегральное выражение, что часто позволяет его упростить. Способов такого преобразования, как и способов замены переменной в тригонометрическом интеграле обычно много, но для некоторых типов интегралов известны стандартные действия, приводящие к ответу наиболее коротким путем. Их описанию и посвящен рассматриваемый параграф лекций. На наш взгляд, приведенный там материал достаточно прост и показателен, сделаем только два замечания

Определенные интегралы, несобственные интегралы

Функции нескольких переменных Пример. Найти область определения функции

Двойной интеграл Отметим здесь, что при интегрировании функции z(x; y) по переменной х, так же как и при дифференцировании, считают y=const и пользуются обычными правилами вычисления интеграла. При этом пределы интегрирования могут зависеть от у (но не от х).

ОДУ первого порядка. Уравнения с разделяющимися переменными и однородные уравнения Линейные уравнения и уравнения Бернулли. Уравнения в полных дифференциалах.

ОДУ высших порядков. Линейные уравнения с постоянными коэффициентами Найти модуль и аргумент чисел  и . Изобразить числа на комплексной плоскости. Представить числа в тригонометрической и показательной форме.

Вычислить значение функции  в точке , ответ представить в алгебраической форме комплексного числа

Определить вид кривой .

Проверить, может ли функция  быть действительной частью некоторой аналитической функции , если да – восстановить ее, при условии .

Найти область плоскости , в которую отображается с помощью функции  область :  плоскости .

Найти все лорановские разложения данной функции  по степеням . Указать главную и правильную части ряда.

Разложить в ряд Лорана функцию  в окрестности особой точки .

Вычислить интегралы от функции комплексного переменного

Вычислить интегралы, используя теорему Коши о вычетах

Изменить порядок интегрирования в интеграле .

Найти объем тела, ограниченного указанными поверхностями. Приведем решение двух задач на вычисление объемов тел, рассматривая тела с различной геометрией поверхности.

Найти объем тела  ограниченного поверхностями

Найти массу пластинки (): ,

Найти массу тела , ограниченного поверхностями: ; ; ; ; плотность массы тела .

Вычислить криволинейный интеграл

Вычислить массу дуги кривой () при заданной плотности :

Вычислить работу силы  при перемещении единичной массы вдоль кривой  линии пересечения двух поверхностей:  от точки  до точки 

 

Вычислить расходимость (дивергенцию) и вихрь (ротор) в произвольной точке , а также найти уравнения векторных линий поля градиентов скалярного поля .

Убедиться в потенциальности поля вектора ,

Исходя из определения производной, найти f ¢(0) для f(x)=

Найти производную показательно-степенной функции y=.

Для функции y(x), заданной неявно уравнением xey  yex+x=0, найти y¢x и y¢¢xx (аналитические выражения и значения в точке x0=0).

С помощью дифференциала функции вычислить приближённо   при x = 7,76.

Многочлен f(x)=3x4  22x3 + 60x2  73x + 39 по степеням x представить в виде многочлена по степеням (x  2).

Исследовать поведение функции в окрестности точки с помощью формулы Тейлора:  f(x)=  ln2x, x0 =1.

Вычислить предел с помощью формулы Тейлора: .

Провести полное исследование поведения функции и построить её график:

Матрицы. Терминология Прямоугольная таблица действительных чисел

Принцип равенства Две действительные матрицы  и  называются равными (записывается ), если они имеют одинаковые размеры, т.е. числа строк и столбцов у этих матриц совпадают, и на одинаковых местах в этих матрицах стоят одинаковые элементы.

Сложение матриц Операция сложения определена лишь для матриц одинакового размера Умножение матриц Скалярное умножение арифметических векторов Пусть . Для того чтобы, существовало произведение   необходимо выполнение условия согласования , т.е. число столбцов матрицы  должно совпадать с числом строк матрицы  (или порядок строк матрицы  должен совпадать с порядком столбцов матрицы ). Рассмотрим основные свойства умножения матриц

Теория делимости квадратных матриц Выше мы убедились, что арифметические операции над матрицами, прежде всего в части умножения, отличаются по своим свойствам от аналогичных операций над числами. Однако наиболее существенные отличия связаны с операцией деления.

Основные типы алгебраических структур Пример. Множество  является мультипликативной группой, т.е. операция умножения матриц определяет на этом множестве структуру группы. Элементарные преобразования над матрицами и элементарные матрицы

Нашей ближайшей целью является доказательство того, что любая матрица с помощью элементарных преобразований может быть приведена к некоторым стандартным видам. На этом пути полезным является язык эквивалентных матриц.

Пример Построить матрицу  приведённого вида, Разложение матрицы в произведение простейших 1-й критерий обратимости матрицы. Для того, чтобы матрица  была обратимой, необходимо и достаточно, чтобы она была представима в виде произведения элементарных матриц. Достаточность. Элементарные матрицы обратимы, а произведение обратимых матриц есть матрица обратимая. Поэтому утверждение “матрица, представимая в виде произведения элементарных матриц, обратима очевидно.

Матричные уравнения Уравнение, называется матричным, если в качестве неизвестного оно содержит матрицу. Простейшие матричные уравнения имеют вид

Найти матрицу , если .

  Пример Найти матрицу ,

Найти матрицу .

Разложить матрицу  в произведение простейших. Выяснить, является ли матрица  обратимой, и в случае её обратимости найти матрицу , если .

 

Примеры решения и офрмления задач контрольной работы

Неопределенный интеграл Пример . Найти интеграл . Решение. Воспользуемся формулой интегрирования по частям: .

Найти интеграл .

Определенный интеграл Вычисление определенного интеграла

Пример Вычислить интеграл . Решение. Для того, чтобы вычислить данный интеграл, воспользуемся основной тригонометрической заменой:

Приложения определенного интеграла Площадь плоской криволинейной трапеции. Пример. Вычислить площадь фигуры, ограниченной линиями: .

Вычисление длины дуги кривой. Пример. Вычислить длину дуги кривой: , между точками пересечения с осями координат. Решение. Данная кривая задана в параметрическом виде, то есть x и y зависят от параметра t. Поэтому, чтобы построить точку с координатами (x,y) нужно задать некоторое значение параметра и потом посчитать x и y .

Тройной интеграл в цилиндрических и сферических координатах

Вычислить тройной интеграл , где

Вычислить тройной интеграл , где С помощью тройного интеграла наряду с другими величинами можно вычислить

Применение тройных интегралов. Масса неоднородного тела Тройной интеграл равен произведению значения подынтегральной функции в некоторой точке области интегрирования на объем области интегрирования, т. е.

Цилиндрические координаты

Вычислим объем шара радиуса R. В этом случае подынтегральную функцию надо взять равной 1, и мы получим

Объём цилиндрического тела. Двойной интеграл. Пусть в некоторой замкнутой области D плоскости хОу определена ограниченная функция z = f(x,у), причём f(x,y)>0. К определению двойного интеграла приходим, вычисляя объём фигуры, основание которой - область D; сверху фигура ограничена поверхностью, уравнение которой z=f(x,y) боковая поверхность - цилиндрическая, образованная прохождением прямой, параллельной оси Oz вдоль границы L области D.

Вычисление двойного интеграла в декартовых координатах Двойной интеграл в полярных координатах

Тройной интеграл в цилиндрических координатах Цилиндрические координаты при вычислении тройного интеграла удобно применять тогда, когда область V проектируется на одну из координатных плоскостей в круг или часть круга.

Криволинейный интеграл первого рода Вычисление криволинейных интегралов 1-го рода

Криволинейный интеграл второго рода Пусть по кривой MN, расположенной в плоскости хОу, движется материальная точка Р (х, у ), к которой приложена сила F , изменяющаяся по величине и направлению при перемещении точки. Физическая задача вычисления работы силы  при перемещении точки Р из положения М в положение N приводит к понятию криволинейного интеграла второго рода. Для этого кривая MN разбивается на п произвольных частей точками М=M1,M2,M3,…Mn=N Вычислить криволинейный интеграл первого рода

Формула Грина. Условие независимости криволинейного интеграла второго рода от вида пути интегрирования

Поверхностный интеграл первого рода Пусть f(x,y,z) - функция, непрерывная на гладкой поверхности S. (Поверхность называется гладкой, если в каждой её точке существует касательная плоскость, непрерывно изменяющаяся вдоль поверхности).

Поверхностный интеграл второго рода К понятию поверхностного интеграла 2-го рода приводит физическая задача о вычислении потока жидкости через некоторую поверхность S. При этом, в каждой точке поверхности S задаётся векторная функция (x,y,z) скорости жидкости. Поверхность S называется двусторонней, если нормаль к поверхности при обходе по любому замкнутому контуру, лежащему на поверхности S, возвращается в первоначальное положение. Сторона поверхности S задаётся выбором направления нормали к поверхности, в этом случае поверхность называется ориентированной. Изобразить на плоскости фигуру D. Вычислить массу пластины О с поверхностной плотностью распределения μ=μ(х, у). Рекомендуется использовать полярную систему координат.

С помощью двойного интеграла найти площадь фигуры, ограниченную заданными линиями.

Функция нескольких переменных и ее частные производные Определение функции нескольких переменных Если каждой паре (x, y) значений двух независимых друг от друга переменных x и y из некоторого множества D соответствует определённое значение величины z, то говорят, что z есть функция двух независимых переменных  x и y, определённая на множестве D. Множество D называется областью определения функции z = z (x, y).

Полное приращение и полный дифференциал ФНП Частные производные ФНП, заданной неявно

Экстремумы ФНП Локальные максимумы и минимумы ФНП Говорят, что функция z = f (x, y) имеет локальный максимум в точке (x0, y0), если существует окрестность точки (x0, y0), в которой выполнено неравенство f (x0, y0) > f (x, y) для всех точек (x, y) из этой окрестности, отличных от (x0, y0): .

Скалярное поле. Градиент. Производная по направлению

Функции комплексной переменной Определение и свойства функции комплексной переменной Пусть даны две плоскости комплексных чисел и на первой – множество D комплексных чисел z = x + iy, где i – мнимая единица (i2 = –1), на второй – множество G комплексных чисел w = u +iv.

ПримерПроверить аналитичность ФКП .

 

Справочный материал к выполнению контрольной работы №2

Двойной интеграл Вычисление двойного интеграла в декартовых координатах

Вычисление тройного интеграла в декартовых координатах

Криволинейный интеграл II рода (по координатам)

Векторное поле Поток векторного поля через поверхность

Потенциальные и соленоидальные векторные поля Ротор векторного поля

 

Решение примерного варианта контрольной работы №1

Задача . Дана функция z = cos2(2x – y). Требуется: 1) найти частные производные  и ; 2) найти полный дифференциал dz;

Найти частные производные  и , если переменные x, y, и z связаны равенством 4x2 y ez – cos(x3 – z) + 2y2 + 3x = 0.

Дана функция двух переменных: z = x2 – xy + y2 – 4x + 2y + 5 и уравнения границ замкнутой области D на плоскости xОy: x = 0, y = –1, x + y = 3. 

Поверхность задана уравнением z =  + xy – 5x3. Составить уравнения касательной плоскости и нормали к поверхности σ в точке М0(x0, y0, z0), принадлежащей ей, если x0 = –1, y0 = 2.

Дана функция комплексной переменной , где z = x + iy, и точка z0 = – 1 + 3i.

Решение примерного варианта контрольной работы №2

Задача . Используя двойной интеграл, вычислить статический момент относительно оси Ox тонкой однородной пластинки, имеющей форму области D, ограниченной заданными линиями: . Построить чертеж области интегрирования.

Вычислить работу силы  при перемещении точки приложения силы вдоль заданной кривой L:  от точки B до точки C, если значения параметра t в точках B и C заданы: .

Задача.  Дано векторное поле  и уравнение плоскости d: 3x + y + 2z – 3 = 0. Требуется:

найти поток поля  через плоскость треугольника АВС где А, В, и С – точки пересечения плоскости d с координатными осями, в направлении нормали плоскости, ориентированной «от начала координат»; построить чертеж пирамиды ОАВС, где О – начало координат; используя формулу Остроградского-Гаусса, вычислить поток поля  через полную поверхность пирамиды ОАВС в направлении внешней нормали.

Проверить, является ли векторное поле силы  потенциальным или соленоидальным. В случае потенциальности поля найти его потенциал и вычислить с помощью потенциала работу силы  при перемещении единичной массы из точки M(0,1,0) в точку N(–1,2,3).

Средства мультимедиа в Linux